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ABSTRACT 

Informed disaster management requires detailed knowledge of the affected environment. Predictive 
analytics can help to provide such insight. Both the Integrated Internal DIsplacement Population Sampler 
(IIDIPUS) statistical engine, and the Oxford Disaster Displacement Real-time Information Network (ODDRIN) 
interactive data visualisation software, have been developed through a collaboration between the 
Department of Statistics, University of Oxford, and the Internal Displacement Monitoring Centre (IDMC). 
This paper demonstrates the capacity of the IIDIPUS code to inform disaster resource allocation on the 
short to mid-term. The primary aim of IIDIPUS is to estimate human displacement, not damaged assets. 
This shift in focus increases the expected accuracy in the prediction of the spatial distribution of 
displacement, highlighting displacement hotspots. Sub-national and national vulnerability, sequential event 
modelling, and satellite image-based building damage assessment data are integrated into IIDIPUS. The 
IIDIPUS code predictions were more than 10 times more accurate in predicting the number of displaced 
people than two world renowned risk models: the Global Disaster Alert and Coordination System alert score 
and the United States Geological Survey PAGER risk score, over 101 historical earthquakes in 37 different 
countries. Mid to long term temporal displacement predictions utilise mobile phone data-based 
displacement information, with the potential for disaggregation by sex and age. Finally, coupling IIDIPUS 
with OpenRouteService facilitates the optimisation of the location and capacity of emergency shelters. 

INTRODUCTION 

Predictive analytics are beginning to play a crucial role in disaster management. With economic budgets of 
limited flexibility, questions arise such as whether to allocate thousands or millions of dollars in 
humanitarian aid after rapid-onset natural hazards such as tropical cyclones or earthquakes. Spatial 
distribution of humanitarian aid is prioritised based on equity but requires intricate knowledge of worst-
affected regions. Expert opinion must always guide management decisions and resource allocation. The 
knowledge and understanding that guides expert decisions come from a broad comprehension of historical 
events: to learn from the past. However, this seems counter-intuitive, as ‘No two disasters are alike’.1 

An alternative way of stating this would be to say that natural hazards are inherently stochastic processes: 
a roll of the dice. Two similar cities with the same population can be struck by the exact same hazard 
intensity, yet the number of displaced persons can be more than ten times higher in one city than the other. 
The role of quantitative methods and risk modelling is to separate causal factors that result in disaster 
vulnerability (e.g. infrastructure quality or income disparity) from plain and simple bad luck. Exploring such 
questions allows for extrapolation in case of a future event, such as to assess the damage risk for higher 
hazard intensities or lower quality building infrastructure. This helps to guide disaster management, 
government policy and overall preparedness to learn from the mistakes/successes of the past. Informing 
such factors can also significantly reduce the total resources required for the next event occurrence. It is 
impossible to remove all uncertainty in resource allocation: the larger the population exposed to the 
hazard, the larger the expected error in the predictions. However, uncertainty can be significantly reduced 
through combining informative data (e.g. population maps) with well-suited risk models. 

 
1 UNISDR (now UNDRR), “Global Assessment Report on Disaster Risk Reduction 2013”. 2013. 
https://www.undrr.org/publication/global-assessment-report-disaster-risk-reduction-2013 

https://www.undrr.org/publication/global-assessment-report-disaster-risk-reduction-2013


 

 

 

 

Open-Access Data 

Recent years have witnessed a boom in the availability of open-access data. Creating accurate and effective 
risk models requires a minimum set of ingredients, all of which are now openly available in various forms 
and flavours. With relative ease, it is possible to access high-granularity gridded datasets that cover most 
countries in the world, providing estimates of population count and density, and Gross Domestic Product 
at Purchasing Power Parity (GDP-PPP) information disaggregated on a sub-national level. National-level 
indicators such as unemployment rates and income distributions can be retrieved through user-friendly 
access methods. Real-time, high quality hazard intensity mapping permits the visualisation of current and 
historical natural hazards in great detail. Furthermore, organisations such as the Internal Displacement 
Monitoring Centre (IDMC) hold decades-worth of records of the number of people displaced from the onset 
of tens of thousands of different events. The availability of such high quality and detailed databases greatly 
facilitates and even encourages organisations, academic institutions and the general public at large to 
contribute their own formulations of disaster risk. 

Research Contribution 

The research presented in this paper represents a collaboration between the University of Oxford and 
IDMC, made possible through the Engineering and Physical Sciences Research Council Impact Acceleration 
Account (EPSRC-IAA) grant. The aim is to question some traditional concepts of disaster risk modelling, 
address common issues and provide solutions. A principle focus is to provide an incentive to deviate away 
from calculating the total (financial or asset-based) cost of an event, towards first addressing the population 
demographic predicted to be displaced, then making the economic calculation. Financial and humanitarian 
resource allocation is often based on exposed financial assets or the number of exposed buildings, and can 
often fail to address the short and long term costs of displaced communities. Centering the question on 
estimating the displaced population instead of destroyed assets, this reformulation could decrease 
common long-term outcomes of disasters such as forced migration or even gentrification. 

This article is structured in three main sections. The first section provides a definition of disaster risk 
modelling, highlighting some common issues and describing the solutions proposed in this research, then 
describes the IIDIPUS code model, data implementation and methodology. The second section presents 
the results, firstly through the use of global risk models for earthquakes, then through local-level disaster 
risk models, with Cyclone Harold as an example. Two main examples of the potential for future predictive 
analytics with IIDIPUS are also given in the second section, via the use of integrated information systems. 
This includes the use of mobile phone data and with open-source mapping software. The final section 
provides a conclusion and future outlook. 

DISASTER RISK MODELLING 

Risk modelling for natural hazards tends to separate the required information for predictions into three 
categories: ‘hazard’, ‘exposure’ and ‘vulnerability’. Note that sometimes a fourth category (here included 
in vulnerability) is ‘coping capacity’. Hazard refers to the hazard intensity, such as the surface wind speed 
or flood level experienced at a specific location. Exposure refers to exposed elements, such as the number 
of people or the number of buildings or financial assets exposed to a non-negligible hazard intensity. 
Vulnerability is a very broad term, but assesses a causal susceptibility to disaster risk, and is usually based 
on both individual and collective effects. Examples of which are low individual income and poor government 
preparedness. Vulnerability is the most difficult of the three categories to quantify. The number of damaged 
elements (e.g. buildings or population) is predicted by combining these three categories via a risk model. 
Resource allocation is not directly calculated in this research, but can be estimated via the use of detailed 
micro and macroeconomic information, such as the cost of resources (shelter, food, medical supplies), 
transportation and resource distribution. 



 

 

 

 

Vulnerability 

The more granular and high-quality the vulnerability information available, the more accurate the 
prediction. Local-level vulnerability can come in various forms. For example, in the Philippines, the 
Philippine Statistics Authority (PSA) regularly (every 2-5 years) publish detailed, census-based demographic 
information disaggregated by region2. Population and housing-related demographic information is 
disaggregated per city/municipality and building construction type, providing information such as the 
number of households and the household population size. Such high-quality vulnerability information can 
directly lead to improved disaster management and resource allocation. The difficulty with incorporating 
local vulnerability for globally predictive disaster risk models is that the information between countries 
must correspond directly with one another. If the risk model is built to require stratified housing quality 
information per region, every additional country or area calculated will also require this information. 
Furthermore, merging datasets - called ‘data harmonisation’ - is not an optimal solution, either: the 
definition of a ‘strong’ and ‘weak’ building varies significantly between countries. In this research, a focus 
is made on two local vulnerabilities: income and population density. These two variables were chosen due 
to the open-availability of globally harmonised datasets. Including local income and population density in 
the risk model provides insight into the etiology of socio-economic and rural-urban differences in disaster 
risk, respectively. 

National vulnerability in the context of disaster risk is a vast and, so far, inconclusive topic. A meta-analysis 
study by Beccari, 2016, reviewed 106 methodologies that had the common aim of developing a disaster 
vulnerability index3. A disaster vulnerability index is a compound variable, which means that it is comprised 
of a specific combination of other variables, such as the unemployment rate or the percentage population 
aged over 65. In the 106 different methodologies aforementioned, 2298 different variables were used to 
form the vulnerability indices. This reflects that there is clearly no common consensus on which are the 
variables that correlate most with disaster vulnerability. The purpose of the research presented here is to 
demonstrate a proof-of-principle for integrated vulnerability. Therefore, as the combination of national 
vulnerability indicators is a poorly-resolved domain, a few common and intuitively-relevant variables were 
chosen for this study: physical infrastructure quality, disaster risk reduction index, government 
effectiveness, aid dependence, and poverty and development. Furthermore, as the global displacement 
model is based on past earthquake events, earthquake exposure was also included. 

Sustained Hazard Impact 

Sustained impact from a hazard is something that is often neglected from risk modelling. Sustained impact 
is the accumulation of damage due to multiple impacts, not just considering the maximum hazard impact 
intensity over the entire event duration. For example, earthquake damage risk models tend to take the 
‘worst’ earthquake, defined by differing criteria such as the largest maximum intensity, or the largest 
exposed population to a non-negligible intensity. The issue is to assume that pre/aftershocks are negligible, 
which is often not the case4. To provide another example, tropical cyclone damage risk models often take 
the global maximum wind speed of the cyclone path5. The accumulation of damage from experiencing 
hours or days of extreme wind speeds can be significantly more severe than being exposed to the maximum 

 
2 PSA, ‘Housing Characteristics in the Philippines (Results of the 2015 Census of Population)’, 2018. 
https://psa.gov.ph/population-and-housing 
3 Beccari B. ‘A Comparative Analysis of Disaster Risk, Vulnerability and Resilience Composite Indicators’. 
PLOS Currents Disasters. 9(1), 2016.  
https://doi.org/10.1371/currents.dis.453df025e34b682e9737f95070f9b970. 
4 Hough, S. E., and Jones, L. M. ‘Aftershocks: Are they earthquakes or afterthoughts?’ EOS, Transactions 
American Geophysical Union 78(45), 1997, p 505-508. 
5 Aznar-Siguan, G., and Bresch, D.N. ‘CLIMADA v1: a global weather and climate risk assessment platform.’ 
Geoscientific Model Development 12(7), 2019, p 3085-3097. 

https://psa.gov.ph/population-and-housing
https://doi.org/10.1371/currents.dis.453df025e34b682e9737f95070f9b970


 

 

 

 

wind speed once. By including snapshots of the hourly maximum surface wind speed, over days or even 
weeks, this research aims to produce a more realistic and accurate risk model. 

Integrated Internal Displacement Population Sampler (IIDIPUS) 

The main aim of the collaboration between the University of Oxford and IDMC was to build a software tool 
to predict disaster displacement risk, using state-of-the-art computational statistical algorithms and 
mathematical models. Many of the unique capabilities and reformulations of the IIDIPUS code is through 
the specific data used. The model is built by layering different datasets onto one another, providing insight 
into the hazard, exposure and vulnerability of the event. Figure 1 provides an illustration of the layering of 
the important datasets. 

 

 

As mentioned previously, IIDIPUS focusses on the human aspect of disaster risk instead of the economic 
cost or damaged assets, by using population count data to predict the displaced population. The gridded 
population count data used is the UN WPP-Adjusted Population Count, taken from the SocioEconomic Data 
and Applications Center (SEDAC) Center for International Earth Science Information Network (CIESIN)6. To 
accurately model the spatial dynamics, as well as the variation in building damage (the stochastic 
component of the damage likelihood calculation), satellite image-based building data assessment data is 
implemented. The building damage data is extracted from both the United Nations Institute for Training 
and Development - Operational Satellite Applications Programme (UNITAR-UNOSAT)7 and Copernicus8. The 
inclusion of satellite image-based building damage data is a novelty of the IIDIPUS code as compared to 

 
6 Center for International Earth Science Information Network - CIESIN - Columbia University. 2018. ‘Gridded 
Population of the World, Version 4 (GPWv4): Population Count Adjusted to Match 2015 Revision of UN WPP 
Country Totals, Revision 11’. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). 
https://doi.org/10.7927/H4PN93PB. 
7 Maps and Data – UNITAR. http://www.unitar.org/unosat/maps 
8 Aifantopoulou, D. ‘Copernicus emergency management Service.’ 10442/15383 (2016): 00-54. 
https://emergency.copernicus.eu/ 

Figure 1: data layering in the IIDIPUS code. From the top layer downwards: satellite image-based building damage assessment data, 
hazard intensity mapping, census-based sub-national GDP-PPP per capita information, population count based on census-data and 
satellite-luminosity, and the location information such as region/country names and boundary shapes as well as elevation. 

https://doi.org/10.7927/H4PN93PB
http://www.unitar.org/unosat/maps
https://emergency.copernicus.eu/


 

 

 

 

alternative disaster risk models. Sequential event modelling requires high spatial resolution data that covers 
the entire period of the hazard impact. For earthquakes, the United States Geological Survey (USGS) high 
resolution shakemap intensity raster data9 is accessed directly via the use of an API. For tropical cyclones, 
the hourly weather data uses the Modern-Era Retrospective analysis for Research and Applications, Version 
2 (MERRA-2) measurements, made and processed by the National Aeronautics Space Agency Goddard 
Earth Sciences Data and Information Services Center (NASA-GES-DISC)10. The national-level vulnerability 
parameters were extracted from the World Bank, the Joint Research Centre – European Commission (JRC-
EC) and the World Inequality Database (WID). Sub-national vulnerability indicators were extracted from 
various sources. The GDP-PPP per capita gridded dataset was taken from Kummu, et al11 to produce the 
sub-national socio-economic vulnerability. The socio-economic sub-national vulnerability indicator is 
calculated by combining the national income distribution (from the WID) with the local GDP value. If a 
country’s population is ordered in terms of income, then the 50th percentile (the median income) of a 
population of 20 million would be the income of the 10 millionth person. The 10th, 20th, 30th, 40th, 50th, 60th, 
70th, 80th, and 90th income percentiles were chosen to allow an accurate reflection of income distribution, 
without being strongly biased by the super-rich or super-poor. Before combining the income distribution 
with the GDP data, the income distribution is modified such that the different percentiles are divided by 
the median (50%) value. When combined with the local GDP-PPP per capita value, this can be interpreted 
as the local ‘income’, whereby the middle income is equal to the local GDP-PPP per capita, and differing 
percentiles become relative to the middle income. For example, at a location with a GDP-PPP per capita of 
$10,000, the 50th percentile is assumed to earn $10,000. If the 80th percentile earns two times more than 
the 50th percentile, then this population is assumed to earn $20,000. In this way, it is possible to construct 
a sub-national vulnerability indicator that correlates with socio-economic factors, including income 
disparity. For the rural vs urban sub-national indicator, the aforementioned UN-adjusted population count 
was used. For short to mid-term spatially temporal displacement inference, mobile phone data can be used 
by the IIDIPUS code. Currently, no specific organisation/companies mobile phone-based displacement 
inference data has been directly integrated into IIDIPUS. However, the code has been adapted to easily 
implement data from organisations such as the Facebook Interactive Disaster Displacement Maps12 and 
Flowminder13. Emergency shelter optimisation is calculated using OpenStreetMaps (OSM)14 and the 
OpenRouteService (ORS)15 open licensed products. 

Mathematical models such as disaster risk models require very specific tuning of certain parameters in 
order to produce the most accurate predictions. Finding the model parameters that best correspond to the 
observed data is the role of computational statistical algorithms. The mathematical model presented in this 
paper uses a Bayesian framework, which is a specific formulation that allows expert knowledge to be 
included to guide the model tuning, and emphasises evaluating model uncertainty. Markov Chain Monte 
Carlo (MCMC) algorithms are implemented to find optimal solutions for the model parameterisation. The 

 
9 Wald, D. J., et al, ‘ShakeMap manual: technical manual, user's guide, and software guide’, USGS 
Publications Warehouse, 12-A1, (2005) http://pubs.er.usgs.gov/publication/tm12A1 
10 Rienecker, M. M., et al, ‘MERRA: NASA’s Modern-Era Retrospective Analysis for Research and 
Applications’, Journal of Climate, 24(14), 3624-3648. (2011) 
https://journals.ametsoc.org/view/journals/clim/24/14/jcli-d-11-00015.1.xml 
11 Kummu, M., et al. ‘Gridded global datasets for gross domestic product and Human Development Index 
over 1990–2015.’ Scientific data 5(1) (2018) https://www.nature.com/articles/sdata20184 
12 Maas, Paige, et al. ‘Facebook Disaster Maps: Aggregate Insights for Crisis Response & Recovery.’ KDD. Vol. 
19. (2019) 
13 Deville, Pierre, et al. ‘Dynamic population mapping using mobile phone data.’ Proceedings of the National 
Academy of Sciences 111.45 (2014) 
14 OpenStreetMap contributors. https://www.openstreetmap.org 
15 OpenRouteService contributors. https://openrouteservice.org 

http://pubs.er.usgs.gov/publication/tm12A1
https://journals.ametsoc.org/view/journals/clim/24/14/jcli-d-11-00015.1.xml
https://www.nature.com/articles/sdata20184
https://www.openstreetmap.org/
https://openrouteservice.org/


 

 

 

 

use of MCMC methods allows the user to access a detailed understanding of not just the most likely 
parameters, but the uncertainty in each, and even outputs the correlation between different parameters. 
For example, the strength of the influence of the physical infrastructure quality index on disaster risk is 
output as a plausible range of values, indicating the most likely value. Furthermore, the strength of the 
correlation between physical infrastructure quality and a socio-economic indicator can also be understood 
directly. 

RESULTS 

In scientific research, the peer-review process is a crucial element to ensure high quality and accurate 
scientific publications. Before the peer-review process has been completed and a scientific article 
published, all results are preliminary. Therefore, the results published in this article are preliminary. The 
results are presented in four subsections. The first two subsections present the preliminary results from 
the IIDIPUS software, which illustrate the predictive performance on a global and local level, respectively. 
The third subsection describes the use of mobile phone data to infer spatially disaggregated temporal 
population displacement. Finally, the fourth subsection explores the capacity for emergency shelter 
optimisation. 

Global Displacement Model 

A global risk model is defined as a model that is capable of making predictions for natural hazards at a global 
scale, and even compare events between countries through causal relations. When building such intricate 
global risk models from scratch, it is important to start off by addressing the most simple hazards, especially 
those where the required data is easily available. Storms and cyclones are inherently multi-hazard: rainfall, 
storm surge and surface wind speed all play a role. Additionally, floods can last for months, and such long-
term effects are exceptionally difficult to accurately model. Producing a global displacement model for such 
intricate multi-hazard models requires a large amount of data and ensuring exceptionally high data quality. 
For simplicity, in the global displacement model presented here, a focus is made on earthquakes. 

Earthquakes 

In the 101 earthquakes studied for this research, the total people displaced over all events was 9.8 million, 
ranging from 124 people in the Laos earthquake of November 2019 to 2.6 million people in the Nepal 
earthquake of April 2015. Earthquakes studied occurred in 37 different countries. The majority of the 
earthquakes occurred in Asia (69), with 17 in the Americas, 9 in Europe, 4 in Africa and 2 in Oceania. The 
earthquakes explored in this study dated between 2008 up to 2020. 

The predictive power of the IIDIPUS code is calculated by comparing with two world leading hazard alert 
systems: the United States Geological Survey (USGS) PAGER score16 and the Global Disaster Alert and 
Coordination System (GDACS) alert score17. The risk score predictions of USGS-PAGER are based on both 
the financial cost of the earthquake and the number of fatalities, and the GDACS alert score predictions are 
based on the number of fatalities. The USGS-PAGER alert is a four-category alert system: green, yellow, 
orange and red. The GDACS alert score is continuous, ranging from 0 for negligible risk to above 2 which is 
deemed a red alert. Comparison with IIDIPUS is done by converting the two alert scores into predictions 
for the number of people displaced, using Generalised Linear Models (GLM). 

 
16 Jaiswal, K. S., et al. "Earthquake casualty models within the USGS Prompt Assessment of Global 
Earthquakes for Response (PAGER) system." Human casualties in earthquakes. Springer, Dordrecht, 2011. 
83-94. https://earthquake.usgs.gov/data/pager/background.php 
17 De Groeve, T., Vernaccini, L., and Annunziato, A. "Modelling disaster impact for the global disaster alert 
and coordination system." Proceedings of the 3rd International ISCRAM Conference. Newark, NJ, USA, 
2006. https://www.gdacs.org/Knowledge/models_EQ.aspx 

https://earthquake.usgs.gov/data/pager/background.php
https://www.gdacs.org/Knowledge/models_EQ.aspx


 

 

 

 

The definition of an accurate global model used for this research is one that reduces the absolute difference 
between the observed and predicted displaced population, relative to the observed estimate. Making the 
difference relative to the observed estimate acts to convert the error to a fraction or percentage of the 
total observed displacement. This is important when the displaced estimates range from the hundreds to 
the millions. A one percent error in the Nepal earthquake would lead to 26,000 people incorrectly predicted 
as displaced, but for Laos this would be only one person. If the relative value was not taken (diving by the 
observed value for each event), then small errors in the earthquakes which had a large displacement, such 
as for Nepal, would dominate the errors in the smaller-scale events. The average percentage error over all 
earthquakes was 426% for the IIDIPUS code, 4,894% for the GDACS alert score and 6,545% for USGS-PAGER. 
The median percentage error indicates that fifty percent of the events were within 95% of the observed 
value for IIDIPUS, 612% for the GDACS alert score and 749% for USGS-PAGER. These results clearly indicate 
that for the 101 earthquakes studied, the IIDIPUS code is significantly more accurate a predictor of the 
number of people displaced by an earthquake than both USGS-PAGER and the GDACS alert score. This 
improvement is expected to increase further with future modifications to the model, and by using machine 
learning algorithms to recognise correlation between a broad range of national vulnerability parameters 
and the displaced populations. 

Out of the choice of the six national vulnerability parameters, the strongest correlated indicators with a 
damage/displacement vulnerability were the physical infrastructure quality index and the poverty and 
development index. This is an intuitive result: stronger house and road construction quality, low 
dependency on humanitarian aid, and high overall country development all lead to lower vulnerability. For 
the sub-national vulnerability parameters, the increase/decrease in the damage and disaster risk depends 
on the hazard intensity and local characteristics such as the local GDP-PPP per capita. Preliminary results 
show that for a person earning the median income in Nepal (8,620 USD-2021) as compared to in Italy 
(52,359 USD-2021), the risk of displacement is at least 1.6 times higher for an earthquake intensity of 5 
MMI. If the earthquake intensity is increased to 7 MMI this factor drops to around 1.4, and the risk for both 
countries becomes equal at intensities above 9 MMI. A further benefit of using the income distribution 
instead of the GNI is that risk disparity can also be inferred. In Nepal, the poorest 10% are at least 2.7 times 
more at risk of being displaced than the richest 10% for a hazard intensity of 5 MMI. In Italy, the poorest 
10% are at least 3.3 times more at risk of being displaced than the richest 10% for a hazard intensity of 5 
MMI. As income inequality between the poor and the rich is larger in Italy than for Nepal, the relative 
displacement risk also increases. 

Local Displacement Model 

The most reliable risk models are built at a local level. More descriptive and detailed population or income 
census data, or building quality information can significantly improve the predictions. However, this 
requires having ample amounts of accurate and detailed information, on at least one historical event. For 
IIDIPUS, generating local models requires, at the very least, building damage assessment data that covers 
a broad spatial extent, in order to accurately characterise the risk of damage and thus displacement. In this 
subsection, a focus is made on a climate-related hazard: Cyclone Harold, that passed over the Pacific islands 
in early April 2020. Cyclones, storms and floods are expected to increase in frequency and severity due to 
climate change. This means that developing tools to provide real-time, spatially distributed displacement 
estimates is expected to become increasingly important in the future. 

April 2020 Cyclone Harold over Vanuatu 



 

 

 

 

 

Figure 2: surface plot of the hourly maximum surface wind speed, in metres per second, around 7am on the 6th April, 2020 (EST). 
Data used for the plot was taken from the NASA - Goddard Earth Sciences Data and Information Services Center (GES DISC). 
Underneath the surface plot is a map of the Pacific islands, indicating that at this time, the cyclone passed directly over Vanuatu. 
Map plot taken from OpenStreetMaps. 

Between the 3rd to 8th April, 2020, Cyclone Harold passed over Vanuatu. Figure 2 shows the maximum 
hourly wind speed around the time when the eye of the cyclone passed over the islands of Vanuatu, 
indicating surface wind speeds of over 40 metres per second (144kmph). ACAPS predicted that around 
160,000, half the population of Vanuatu, were affected by the cyclone. The International Organization for 
Migration Displacement Tracking Matrix (IOM-DTM) estimated that the Internally Displaced Persons (IDP) 
stock on the 15th April 2020 was 18,538 on Vanuatu alone. This estimate was verified and input into the 
IDMC database. In the aftermath, UNOSAT assessed 12,494 buildings for damage using satellite imagery. 
516 buildings were completely destroyed, 100 with moderate damage, 225 with possible damage and 
11,653 described generally as having some form of damage. Figure 3 (right) shows a plot of the location of 
the damaged buildings. 

To predict the displaced population, the IIDIPUS code used over 140-time stamps of the hourly maximum 
wind speed passing over Vanuatu, calculating the damage risk from the sustained impact, not the overall 
maximum intensity. For Vanuatu, the income disparity-related disaster vulnerability estimated that the 
poorest 10% were twice at risk of displacement than the richest 10% at 25m/s (90kmph) wind speeds and 
1.5 times more at risk for 35m/s (126kmph) wind speeds. The spatial distribution of the displaced 
population predicted by IIDIPUS is shown in figure 3 (left). Note that the UNOSAT building damage and the 
IIDIPUS predictions are not meant to correlate directly with one another, as only specific regions tend to 
be assessed for damage by UNOSAT, not the entire area. Therefore, the IIDIPUS predictions can help to find 
hotspots where large displaced populations are foreseen, but no building damage assessment was made 
by UNOSAT, such as the island of Lambukuti. The largest displacements predicted were located in the region 
of Luganville, the second largest city in Vanuatu. Future improvements to the predictions made for Cyclone 
Harold include using the higher resolution population data provided by Facebook Data for Good18. 

 
18   Facebook Connectivity Lab and Center for International Earth Science Information 
Network - CIESIN - Columbia University. 2016. High Resolution Settlement Layer (HRSL). Source imagery for 
HRSL © 2016 DigitalGlobe. 



 

 

 

 

a)                                                                            b) 

Additionally, higher resolution information about the GDP-PPP information for each island, or more 
detailed information on the building quality per island would result in more precise spatial estimates. 

 

Figure 3: (left) predictions of the displaced population made by IIDIPUS, noting that the colourmap is on a log-scale, (right) the 
UNOSAT building damage assessment data. Overlay onto the Vanuatu island map taken from OpenStreetMaps. 

Mobile Phone Data Integration 

Predictive analytics can be used to calculate the rate-of-return of displaced populations. However, 
producing accurate estimates is extremely difficult, due to non-linear dynamics such as government and 
humanitarian aid intervention, the government disaster policy and preparedness, and other effects such as 
social capital. Therefore, in this research, no attempt is made to predict the rate-of-return based on causal 
models, but to rely on available temporal data to infer the rate-of-return. One of the most accurate 
temporal displacement measurements is via inference from mobile phone data. It is even possible to 
disaggregate the population by sex or age. In order to provide anonymity to the general population, 
information on the displaced populations must be spatially aggregated by region or area. Figure 4 shows 
the combination of IIDIPUS displaced population estimates with an example of mobile phone data-based 
displacement information. The example mobile phone data was generated to realistically represent how 
such information would be output by organisations such as Facebook Data for Good or Flowminder. In this 
example, six of the islands of Vanuatu were chosen to aggregate the displaced population information. The 
significant importance of this capacity of the IIDIPUS code is clear: gender-differentiated humanitarian aid 
can be specifically targeted based on temporal estimates of the displaced populations. Furthermore, 
statistical methods can further be applied to mobile phone data to predict long-term trends of the rate-of-
return, especially when combined with historical data. 

 



 

 

 

 

c)                                                                             d) 
 

 

Figure 4: an example of combining mobile phone data-based population displacement information with the IIDIPUS code. The upper 
two plots – (a) and (b) – are 40 days after the hazard occurrence, the lower two – (c) and (d) – are directly after. Sex disaggregation 
of the mobile phone data separates the female displaced population, shown in the left plots (a) and (c), from the male displaced 
population, shown in the right plots (b) and (d). 

Emergency Shelter Optimisation 

The time and distance it would take to travel between certain displaced population locations and a given 
shelter are calculated by use of the ORS. By combining IIDIPUS with the ORS and the locations and capacities 
of emergency shelters, it is possible to optimise emergency shelters for a specific event. The spatial 
distribution of the displaced population output by IIDIPUS can be used to understand whether emergency 
shelters local to specific displacement hotspots are sufficient in capacity. Such evaluations can highlight 
whether additional shelters should be installed in certain areas, and what shelter occupation might be 
expected from the locally displaced population. 

CONCLUSION 

This paper presents the recent successes of the collaboration between the University of Oxford and the 
Internal Displacement Monitoring Centre on disaster-induced displacement risk modelling. The software 
tool consists of two components: IIDIPUS, the statistical engine, and ODDRIN, for interactive data 
visualisation. The research presented in this article has been carried out with the primary purpose of 
informing disaster management and humanitarian aid allocation. The main novelties of the software tool 
are that it places emphasis on predicting displaced populations over damaged assets, includes local and 
national disaster vulnerability in the calculations, uses national income distributions and not the mean 
income, integrates satellite image-based building damage assessment data, and integrates sustained 
hazard impact instead of the maximum hazard impact.  The IIDIPUS tool is therefore purpose built to try to 
further integrate the human aspect into disaster risk modelling. This can be used to provide insight into the 
influence of income disparity on risk, in addition to identifying the role of local and national-level 
vulnerability on the risk of displacement. Two main models are presented: global and local disaster risk 
models. Using the global risk model, predictions on the relative number of people displaced over 101 
different earthquakes showed that IIDIPUS is, on average, more than 10 times more accurate than world 
leading organisations such as the USGS-PAGER and GDACS alert scores. By using specific information 
related to the country of Vanuatu, results for a local risk model were given for Cyclone Harold of April 2020. 
Developing local models can help provide more accurate and detailed predictions of displacement in the 
event of future events. By focussing on a climate-related event, it was illustrated that local models are a 
strong candidate for accurate disaster risk modelling in a future where climate change may induce more 



 

 

 

 

frequent and severe weather-related events. A priority for future work should be to extend the model to 
include alternative natural hazards, such as storms and floods, and to calculate global disaster risk models 
for each. Furthermore, for tropical cyclones and storms, multi-hazard risk modelling should include all the 
necessary hazard components such as storm surges and flooding. Increasing the resolution in the 
population count and GDP-PPP per capita data should also be a high priority. 


